mongodb不支持事务,所以,在你的项目中应用时,要注意这点。无论什么设计,都不要要求mongodb保证数据的完整性。
但是mongodb提供了许多原子操作,比如文档的保存,修改,删除等,都是原子操作。
所谓原子操作就是要么这个文档保存到Mongodb,要么没有保存到Mongodb,不会出现查询到的文档没有保存完整的情况。
考虑下面的例子,图书馆的书籍及结账信息。
实例说明了在一个相同的文档中如何确保嵌入字段关联原子操作(update:更新)的字段是同步的。
book = { _id: 123456789, title: "MongoDB: The Definitive Guide", author: [ "Kristina Chodorow", "Mike Dirolf" ], published_date: ISODate("2010-09-24"), pages: 216, language: "English", publisher_id: "oreilly", available: 3, checkout: [ { by: "joe", date: ISODate("2012-10-15") } ] }
你可以使用 db.collection.findAndModify() 方法来判断书籍是否可结算并更新新的结算信息。
在同一个文档中嵌入的 available 和 checkout 字段来确保这些字段是同步更新的:
db.books.findAndModify ( { query: { _id: 123456789, available: { $gt: 0 } }, update: { $inc: { available: -1 }, $push: { checkout: { by: "abc", date: new Date() } } } } )
用来指定一个键
MongoDB 查询分析可以确保我们所建立的索引是否有效,是查询语句性能分析的重要工具。
MongoDB 查询分析常用函数有:explain() 和 hint()。
explain 操作提供了查询信息,使用索引及查询统计等。有利于我们对索引的优化。
接下来我们在 users 集合中创建 gender 和 user_name 的索引:
>db.users.ensureIndex({gender:1,user_name:1})
现在在查询语句中使用 explain :
>db.users.find({gender:"M"},{user_name:1,_id:0}).explain()
以上的 explain() 查询返回如下结果:
{ "cursor" : "BtreeCursor gender_1_user_name_1", "isMultiKey" : false, "n" : 1, "nscannedObjects" : 0, "nscanned" : 1, "nscannedObjectsAllPlans" : 0, "nscannedAllPlans" : 1, "scanAndOrder" : false, "indexOnly" : true, "nYields" : 0, "nChunkSkips" : 0, "millis" : 0, "indexBounds" : { "gender" : [ [ "M", "M" ] ], "user_name" : [ [ { "$minElement" : 1 }, { "$maxElement" : 1 } ] ] } }
现在,我们看看这个结果集的字段:
官方的MongoDB的文档中说明,覆盖查询是以下的查询:
由于所有出现在查询中的字段是索引的一部分, MongoDB 无需在整个数据文档中检索匹配查询条件和返回使用相同索引的查询结果。
因为索引存在于RAM中,从索引中获取数据比通过扫描文档读取数据要快得多。
为了测试覆盖索引查询,使用以下 users 集合:
{ "_id": ObjectId("53402597d852426020000002"), "contact": "987654321", "dob": "01-01-1991", "gender": "M", "name": "Tom Benzamin", "user_name": "tombenzamin" }
我们在 users 集合中创建联合索引,字段为 gender 和 user_name :
>db.users.ensureIndex({gender:1,user_name:1})
现在,该索引会覆盖以下查询:
>db.users.find({gender:"M"},{user_name:1,_id:0})
也就是说,对于上述查询,MongoDB的不会去数据库文件中查找。相反,它会从索引中提取数据,这是非常快速的数据查询。
由于我们的索引中不包括 _id 字段,_id在查询中会默认返回,我们可以在MongoDB的查询结果集中排除它。
下面的实例没有排除_id,查询就不会被覆盖:
>db.users.find({gender:"M"},{user_name:1})
最后,如果是以下的查询,不能使用覆盖索引查询:
在上一章节MongoDB关系中我们提到了MongoDB的引用来规范数据结构文档。
MongoDB 引用有两种:
考虑这样的一个场景,我们在不同的集合中 (address_home, address_office, address_mailing, 等)存储不同的地址(住址,办公室地址,邮件地址等)。
这样,我们在调用不同地址时,也需要指定集合,一个文档从多个集合引用文档,我们应该使用 DBRefs。
DBRef的形式:
{ $ref : , $id : , $db : }
三个字段表示的意义为:
以下实例中用户数据文档使用了 DBRef, 字段 address:
{ "_id":ObjectId("53402597d852426020000002"), "address": { "$ref": "address_home", "$id": ObjectId("534009e4d852427820000002"), "$db": "istudy"}, "contact": "987654321", "dob": "01-01-1991", "name": "Tom Benzamin" }
address DBRef 字段指定了引用的地址文档是在 runoob 数据库下的 address_home 集合,id 为 534009e4d852427820000002。
以下代码中,我们通过指定 $ref 参数(address_home 集合)来查找集合中指定id的用户地址信息:
>var user = db.users.findOne({"name":"Tom Benzamin"}) >var dbRef = user.address >db[dbRef.$ref].findOne({"_id":(dbRef.$id)})
以上实例返回了 address_home 集合中的地址数据:
{ "_id" : ObjectId("534009e4d852427820000002"), "building" : "22 A, Indiana Apt",
MongoDB 的关系表示多个文档之间在逻辑上的相互联系。
文档间可以通过嵌入和引用来建立联系。
MongoDB 中的关系可以是:
接下来我们来考虑下用户与用户地址的关系。
一个用户可以有多个地址,所以是一对多的关系。
以下是 user 文档的简单结构:
{ "_id":ObjectId("52ffc33cd85242f436000001"), "name": "Tom Hanks", "contact": "987654321", "dob": "01-01-1991" }
以下是 address 文档的简单结构:
{ "_id":ObjectId("52ffc4a5d85242602e000000"), "building": "22 A, Indiana Apt", "pincode": 123456, "city": "Los Angeles", "state": "California" }
使用嵌入式方法,我们可以把用户地址嵌入到用户的文档中:
{ "_id":ObjectId("52ffc33cd85242f436000001"), "contact": "987654321", "dob": "01-01-1991", "name": "Tom Benzamin", "address": [ { "building": "22 A, Indiana Apt", "pincode": 123456, "city": "Los Angeles", "state": "California" }, { "building": "170 A, Acropolis Apt", "pincode": 456789, "city": "Chicago", "state": "Illinois" }] }
以上数据保存在单一的文档中,可以比较容易的获取和维护数据。 你可以这样查询用户的地址:
>db.users